Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination

N.K. Kolas and P.E. Cohen
Departments of *Molecular Genetics and †Obstetrics, Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY (USA)

Abstract. The mismatch repair (MMR) family is a highly conserved group of proteins that function in genome stabilization and mutation avoidance. Their role has been particularly well studied in the context of DNA repair following replication errors, and disruption of these processes results in characteristic microsatellite instability, repair defects and, in mammals, susceptibility to cancer. An additional role in meiotic recombination has been described for several family members, as revealed by extensive studies in yeast. More recently, the role of the mammalian MMR family in meiotic progression has been elucidated by the phenotypic analysis of mice harboring targeted mutations in the genes encoding several MMR family members. This review will discuss the phenotypes of the various mutant mouse lines and, drawing from our knowledge of MMR function in yeast meiosis and in somatic cell repair, will attempt to elucidate the significance of MMR activity in mouse germ cells. These studies highlight the importance of comparative analysis of MMR orthologs across species, and also underscore distinct sexually dimorphic characteristics of mammalian recombination and meiosis.

Meiotic recombination – reciprocal and non-reciprocal

In sexually reproducing organisms meiosis is the cellular event during which one replicative S-phase is followed by two successive divisions to produce gametes with haploid numbers of chromosomes. The success of the meiotic program is dependent on prophase I events, characterized in most cases by homologous chromosome pairing and synapsis to form a proteinaceous synaptonemal complex (SC), and recombination between homologous, non-sister, chromatids (Champion and Hawley, 2002).

Each recombination event is initiated by the formation of a double strand break (DSB) in one sister chromatid (Keeney et al., 1997). Meiotic DNA double-strand breaks occur early in prophase I and are unlike those occurring due to accidental damage or replication machinery slippage in mitotic cells. Instead, meiotic breaks are induced and propagated by expression of key genes, and can only be repaired/resolved once they effect homolog recognition, synapsis and, under appropriate circumstances, homologous recombination (Szostak et al., 1983; Baudat et al., 2000; Champion and Hawley, 2002). Two types of homologous recombination occur at meiosis; one is reciprocal recombination, characterized by an exchange of markers flanking a section of hybrid DNA, resulting in a crossover between the two non-sister strands involved; the second is non-reciprocal, whereby only hybrid DNA results (Fogel and Hurst, 1967; Hurst et al., 1972; Szostak et al., 1983).

In humans the level of divergence between coding regions of homologous chromosomes is approximately 0.05% (<1 bp in every 1000 bp), while congenic mouse strains are approximately 0.02% diverged (Cargill et al., 1999). Hybrid (or heteroduplex) DNA in meiotic recombination intermediates can span more than 1 kb, and any divergent sequences or mismatches present in these spans are substrates for mismatch repair (MMR). At the same time, MMR processes also serve to limit...
The mismatch repair (MMR) machinery recognizes and repairs disruptions in the Watson-Crick basepairing of a DNA double helix. The Escherichia coli MMR system is the paradigm, and mutants (MutS, MutL, MutH and MutU) were named for a so-called “mutator” phenotype. MutS protein acts as a homodimeric ATPase that binds the DNA phosphate-sugar backbone directly. This mismatch, or “kinked” backbone, detection stimulates ADP to ATP exchange and induces a molecular switch, resulting in conformational changes in both the protein and the DNA (Obmolova et al., 2000). Recent evidence from Acharya et al. (2003) has demonstrated that this change also involves the formation of a stable sliding clamp that is capable of motion along as much as 1 kb of DNA adjacent to the mismatch, a process which then allows for the subsequent loading of multiple MutS sliding clamps (Acharya et al., 2003). Exchange of ADP for ATP on MutS also signals and recruits a MutL homodimer, and the MutS/MutL complex undergoes hydrolysis-dependent translocation similar to that seen with the MutS sliding clamp alone (Acharya et al., 2003), possibly toward the MutH endonuclease which is stimulated by MutL to cut the unmethylated newly synthesized strand. MutL appears to facilitate the unloading of MutS sliding clamps, and might additionally induce loading of MutU (Helicase II/UvrD) at the site of the nick to induce unwinding of the nascent strand (Yamaguchi et al., 1998). Four single-strand DNA exonucleases, RecJ, ExoVII, ExoI or ExoX, are able to remove the mispair in either a 5′ to 3′ or 3′ to 5′ direction, depending on the side of the MutH-induced nick. Their functions appear to be redundant, or they may compensate for one another, as MMR is only disrupted when all four are missing (Feschken et al., 2003). Excised DNA is subsequently resynthesized by DNA polymerase III and religated via an as yet unidentified ligase (Modrich and Lahue, 1996; Buermeyer et al., 1999).

Typically, MMR targets mismatches that occur as a result of replication errors in mitotic cells, but MMR also prevents homologous recombination (recombination between sequences that are diverged by more than 10–20%) by way of base-pair mismatch rejection. Interestingly, small insertion/deletion loops (IDLs) between mispaired bases are not the only targets recognized by MMR proteins. Others include cisplatin-induced cross-links, and damage from oxidation and alkylating agents. Moreover, eukaryotic homologs of MutS and MutL interact with other repair pathways such as transcription coupled base-excision repair and nucleotide excision repair (Tsutakawa and Cooper, 2000). Thus, while MutS and MutL have essential roles in the subsequent removal and repair synthesis of DNA, they function primarily in recognition of strand anomalies, DNA binding, conformational changes, and signaling to downstream effectors. As such, the generalized term “mismatch repair” can be considered somewhat of a misnomer.

MMR family of proteins are highly conserved

Homologs of the bacterial MutS and MutL proteins have been conserved through evolution, being identified in fungi, mice, humans, plants, worms and flies (Table 1). The importance of this gene family in maintaining genomic stability has been underscored by the observation that mutations in several family members are associated with human non-polyposis colorectal cancer (HNPCC) (Lynch, 1999; Pedroni et al., 2001; Wei et al., 2002). In addition, spontaneous mutations in these genes are found in 2–13% of spontaneously arising colorectal cancer cases. In most cases, such tumors are characterized by microsatellite instability, which results from an inability to repair replication errors at sites of long simple mono-, di-, and trinucleotide repeats.

Both MutS and MutL homolog proteins act primarily as heterodimers and have DNA binding domains, though MutL heterodimers are thought to bind MutS heterodimers which are bound to DNA. Mice and humans have five MutS homologs, MSH2-6, and four MutL homologs, MLH1, MLH3, PMS2 (for post-meiotic segregation, orthologous to yeast PMS1) and PMS1 (orthologous to yeast MLH2). The MutS homolog complexes that are most recognized to act in mammalian somatic cell repair are MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSβ), while a third MutS heterodimer (MutSγ) of MSH4-MSH5 has a predominant function in meiotic cells (Paquis-Fluckinger et al., 1997; Her and Doggett, 1998; Bocker et al., 1999; Edelmann et al., 1999; Her et al., 1999, 2001; Kneitz et al., 2000; Cohen and Pollard, 2001). Interestingly, recent evidence indicates that MSH2 can form a damage signaling module with ATR and, via MSH6, they regulate phosphorylation of CHK1 and SMC1 in the face of MNNG chemical damage (Wang and Qin, 2003). Furthermore, MMR family members affect somatic cell hypermutation and class switch recombination of immunoglobulin genes (Martin et al., 2003; Bardwell et al., 2004). MLH1 is the primarily utilized MutL homolog, heterodimerizing with PMS2 (MutLo), PMS1 (MutLβ) or MLH3 (MutLγ), this last heterodimer functioning primarily in meiotic events (Fig. 1). MutLo appears to be the primary MutL heterodimer effecting MMR, both in mice and in yeast. Thus, the majority of HNPCC cases are a result of mutations in MSH2 and MLH1, while non-classical (those that do not conform to the Amsterdam criteria for establishing hereditary colorectal cancer risk) HNPCC cases have been associated with mutations in MSH6 (Lucci-Cordisco et al., 2001; Pedroni et al., 2001).
Table 1. MUTS, MUTL and EXO1 homologs in eukaryotic species

<table>
<thead>
<tr>
<th>Escherichia coli (4.6 MB) a</th>
<th>Homo sapiens (3000 MB) a</th>
<th>Mus musculus (2500 MB) a</th>
<th>Drosophila melanogaster (180 MB) a</th>
<th>Arabidopsis thaliana (125 MB) a</th>
<th>Gallus gallus (120 MB) a</th>
<th>Caenorhabditis elegans (100 MB) a</th>
<th>Coprinus cinereus (37.5 MB) a</th>
<th>Saccharomyces cerevisiae (15 MB) a</th>
<th>Schizosaccharomyces pombe (13.8 MB) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MutS</td>
<td>NID b</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>Msh1 Ref 2</td>
<td>Msh1 (NP594677) f</td>
</tr>
<tr>
<td>MutL</td>
<td>NID</td>
<td>Pms1 Ref 3</td>
<td>MutL Ref 4</td>
<td>Pms2 Ref 5</td>
<td>Pms2 Ref 6</td>
<td>Pms2 Ref 6</td>
<td>Pms2 Ref 7</td>
<td>Msh2 Ref 8</td>
<td>Msh2 Ref 9</td>
</tr>
<tr>
<td>MutL Ref 10</td>
<td>NID</td>
<td>Msh2 Ref 10</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>Msh2 Ref 3</td>
<td>Msh2 Ref 13</td>
</tr>
<tr>
<td>MutL Ref 15</td>
<td>NID</td>
<td>MutL Ref 15</td>
<td>NID</td>
<td>NID</td>
<td>MutL Ref 12</td>
<td>NID</td>
<td>NID</td>
<td>Msh3 Ref 13</td>
<td>Swi4 Ref 14</td>
</tr>
<tr>
<td>MutS Ref 19</td>
<td>NID</td>
<td>MutS Ref 20</td>
<td>NID</td>
<td>Msh5 Ref 21</td>
<td>MutS Ref 21</td>
<td>MutS Ref 21</td>
<td>MutS Ref 22</td>
<td>Msh5 Ref 27</td>
<td>Msh6 Ref 28</td>
</tr>
<tr>
<td>MutS Ref 6</td>
<td>NID</td>
<td>NID</td>
<td>MutS Ref 23</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>Msh6 Ref 27</td>
<td>Msh6 Ref 28</td>
</tr>
<tr>
<td>MutL Ref 3</td>
<td>NID</td>
<td>NID</td>
<td>Pms1 Ref 40</td>
<td>NID</td>
<td>Pms1 Ref 40</td>
<td>Pms1 Ref 40</td>
<td>Pms1 Ref 33</td>
<td>Mlh1 Ref 37</td>
<td>Mlh1 Ref 38</td>
</tr>
<tr>
<td>MutL Ref 39</td>
<td>Mlh1 Ref 35</td>
<td>Mlh1 Ref 35</td>
<td>Mlh1 Ref 36</td>
<td>Mlh1 Ref 36</td>
<td>Mlh1 Ref 36</td>
<td>Mlh1 Ref 36</td>
<td>Mlh1 Ref 38</td>
<td>Mlh2 Ref 4</td>
<td>Mlh2 Ref 4</td>
</tr>
<tr>
<td>MutS Ref 41</td>
<td>NID</td>
<td>NID</td>
<td>Mlh3 Ref 43</td>
<td>NID</td>
<td>Mlh3 Ref 43</td>
<td>NID</td>
<td>Ced H12 Ref 43</td>
<td>Mlh3 Ref 44</td>
<td>Mlh3 Ref 44</td>
</tr>
<tr>
<td>MMR exonucleases</td>
<td>Exo1 Ref 45</td>
<td>Exo1 Ref 46</td>
<td>Tos Ref 47</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>NID</td>
<td>Exo1 Ref 48</td>
<td>Exo1 Ref 49</td>
</tr>
</tbody>
</table>

a Haploid genome size (MB = megabasepairs).

b NID: Not identified.
c Numbers in parentheses represent NCBI accession numbers.

Fig. 1. Cartoon of mammalian mismatch repair complexes in repair (A) and meiosis (B). (A) Mammalian somatic cell mismatch repair. Current biochemical and genetic evidence indicates that MLH1 is the pivotal MutL homolog. MLH1 functions as a heterodimer, binding with MutS homologs PMS1, PMS2, and MLH3, which subsequently bind to MutS heterodimers attached to aberrant DNA. This MutS/MutL complex signals downstream effectors to remove and repair lesions such as 1-bp insertion-deletion loops, base-base substitutions and 1–12 bp insertion-deletion loops (MutL-MutL). The function of MutLß complex is still poorly understood. (B) MutL and MutS homologs involved in mammalian meiosis. MSH4 and MSH5 appear to be predominantly employed during meiosis, possibly recruiting MLH1-MLH3 heterodimers. During meiosis, DNA joint molecules are formed by the induction of double-strand DNA breaks and their subsequent repair. At this time heteroduplex DNA is created, which may contain mismatched DNA that are substrates for repair via the MMR pathway. However, substrates for MutS homolog DNA binding, such as double Holliday junctions, may result in ADP-ATP exchange, thereby signaling downstream events in recombination.
Like the *E. coli* MutL homodimer, the eukaryotic MutL homolog heterodimers are thought to act as an adaptor complex, linking the MMR system to downstream effectors. In the case of true MMR events, these downstream events involve the DNA excision and repair enzymes (exonucleases, polymerases, ligases, etc.) responsible for removing and replacing the aberrant nucleotide tract. Although MMR specific endonucleases, helicases, and ligases have not been identified, one MMR 5' to 3' exonuclease, EXO1, has been found to affect both 5' and 3' repair in mice (Wei et al., 2003) and DNA polymerase δ appears to be involved in repair synthesis. In addition, the MutL heterodimer also links MMR events to the cell cycle and checkpoint machinery and is known to induce the expression of pro-apoptotic factors in the face of irreparable damage (Zhang et al., 1999; Schofield and Hsieh, 2003). Thus, MutS and MutL homolog family members have been repeatedly employed as DNA-binding and signaling molecules outside of the typical mismatch repair pathway.

In budding yeast, *Saccharomyces cerevisiae*, MMR family members have been found to be necessary to repair mismatches in meiotic hybrid DNA. Yeast *msh2* and *pms1* mutants exhibit increased post-meiotic segregation without apparent defects in reciprocal recombination. Conversely, MMR family members such as MLH3, MSH4, and MSH5 do not repair hybrid DNA at
meiosis, and instead affect reciprocal recombination and/or interference (Borts et al., 2000; Schofield and Hsieh, 2003).

Although much is known about the meiotic function of MMR protein family members in yeast, studies in mammals are confounded by greater genome complexity and size, more DSBs than eventual recombination products, and difficulty in isolating recombination intermediates and all products of a single meiosis. However, immunocytology and molecular genetic approaches in mice have provided much insight into the roles of these proteins in mammals. This review will outline some of the recent advances in mammalian meiotic MMR studies using various targeted mutations made through homologous recombination. Together with the more complete biochemical evidence from yeast and other organisms, we hope to add insight to the mechanisms involved in meiotic progression in mammals. In particular, this review seeks to address the complexity of MMR interactions within the context of recombination, with comparison to the canonical role of MMR proteins in repair of mismatches. In addition, the review will compare and contrast MMR-driven events across species as a means to identify the roles of the MMR proteins in adapting to increased genome size in mammalian species.

Mammalian MMR proteins and homologous recombination

MSH4 and MSH5

Much of our knowledge of the biochemical function of MSH4-MSH5 heterodimers has arisen as a result of studies in budding yeast. *S. cerevisiae* Msh4 and Msh5 proteins have been shown to form a hetero-oligomeric complex (Pochart et al., 1997) and both msh4 and msh5 mutants have wild-type levels of gene conversion and postmeiotic segregation, indicating that MutS\(_\gamma\) does not normally participate in meiotic MMR per se. Yeast recombination intermediates can be physically observed, and strand exchange occurs at wild-type levels yet crossing over is reduced by about 40 to 50% in msh4/5 mutants, with a resultant increase in non-disjunction and decreased spore viability (Ross-Macdonald and Roeder, 1994; Hollingsworth et al., 1995). Although deleting yeast Msh4 does not prevent meiotic progression at zygote, as it does in mice, synopsis and SC formation are delayed, and interference is disrupted for a sub-progression at zygotene, as it does in mice, synapsis and SC dom, with each SC having at least one. The defect in interference according to SC and chromosome length, rather than at random, with each SC having at least one. The defect in interference in msh4 yeast could be due to delayed synopsis and SC formation, or a failure to load Msh4 (zip1 and zip2 mutants have delayed Msh4 localization). Interestingly, *Schizosaccharomyces pombe* does not have a synaptonemal complex structure nor Msh4/5 orthologs, and subsequently no crossover interference (De Los Santos et al., 2003). There is indication that the

S. cerevisiae Msh4-Msh5 heterodimer biases the resolution of Holliday junctions towards reciprocal recombination, and that they mediate interference. However, as yet, neither yeast Msh4 nor Msh5 have been shown to bind Holliday junctions in vitro, while yeast Msh2-Msh6 have (Alani et al., 1997; Marsischky et al., 1999), leading to the suggestion that Msh4-Msh5 heterodimers function prior to the appearance of these structures (Schofield and Hsieh, 2003). Recent studies have demonstrated that while human MSH4-MSH5 does not bind other types of DNA structures, it does bind Holliday junctions in vitro. This binding stimulates ATPase-dependent sliding clamp activity. Such activation does not occur when MSH2-MSH6 binds to these structures (R. Fishel, personal communication).

Interestingly, a point mutation in yeast Msh5 results in DNA alkylation tolerance (Bawa and Xiao, 2003). Msh4 and Msh5 are considered meiosis-specific MutS homologs, partly since they do not function in mismatch repair, as detected by microsatellite instability, but also their mRNA expression level is low in tissues other than testis (Paquis-Fluckinger et al., 1997). However, there is some indication that Msh4 is expressed at low levels in many other mouse tissues (Her et al., 2001). Whether this mRNA is degraded or translated into protein is unknown. These findings suggest that MSH4 and MSH5 may have a role in detection of DNA damage and cell death in somatic cells, a pathway that may be facilitated by numerous DSBs, induced by the mismatch repair system, that subsequently lead to cell death. Similar to the meiotic requirement for these gene products in mice and yeast, the nematode MSH4 ortholog, encoded by the him-14 gene, appears to be essential for crossing-over. However, like yeast, pairing and synopsis still proceeds in him-14 mutants (Zalevsky et al., 1999). Likewise, *Caenorhabditis elegans* MSH5 is essential for crossing-over and chiasma formation and/or maintenance (Kelly et al., 2000).

Mammalian homologs of Msh4 and Msh5 have been identified in mice and humans, and both are highly expressed in meiotic cells (Wijnen et al., 1996; Paquis-Fluckinger et al., 1997; Her and Doggett, 1998; Her et al., 1999). Both MSH4 and MSH5 proteins have the conserved MutS C-terminal ADP binding motif and protein-protein interaction domain, yet there is some divergence of N-terminal DNA binding residues that may confer alternate binding specificity or function. Amino acids known to be required for mismatch recognition are largely absent in both MSH4 and MSH5, which correlates with these proteins being functionally inactive in post-replicative mismatch repair. Interestingly, structure prediction indicates that an MSH4/5 heterodimer likely contains a hole approximately 30 by 70 Å that would be large enough for a recombination intermediate to slide through as an MSH4/5 sliding clamp proceeds (Obmolova et al., 2000).

Protein-protein interaction studies of mouse and human proteins expressed in cultured cells indicate that MSH4 and MSH5 dimerize via their carboxy-termini (Winand et al., 1998; Bocker et al., 1999; Her et al., 1999, 2001). Furthermore, MSH4 and MSH5 both co-immunoprecipitate with RAD51 in mouse spermatocyte extracts, and also with MLH1, while RAD51 and MLH1 fail to interact biochemically (P.E. Cohen, unpublished observations). These studies, along with immunolocalization data, indicate that MSH4-MSH5 appear on inte-
mediate meiotic nodules (MN) in zygonema of prophase I, and persist through until late pachynema or early diplonema. Specifically, the number of MSH4 foci on spermatocyte chromosome cores during zygonema is approximately 142 per nucleus (Kneitz et al., 2000), roughly half that seen for RAD51 foci at the same stage (Plug et al., 1996), and these MSH4-positive foci steadily decline through late zygonema and into pachynema (Kneitz et al., 2000; Moens et al., 2002). By the mid-pachytene stage, the number of MSH4 foci is approximately 47 per nucleus, roughly double the number of MLH1 foci that are seen at this stage (Anderson et al., 1999; Kneitz et al., 2000).

Immunolocalization of MSH4 indicates that it colocalizes with the single-strand binding protein, replication protein A (Moens et al., 2002). RPA is thought to mediate homology search and strand exchange by binding single stranded DNA with RAD51 and DMC1 (Ashley et al., 1995; Moens et al., 2002). However, RPA single-strand binding activity has also been implicated with a role in the MMR pathway (Lin et al., 1998; Ramilo et al., 2002), and it is unclear if all RPA foci at prophase I mediate the same recombination/resolution pathway at all MNs with which they associate. RPA localizes as discrete foci to the SC, starting at mid-leptotene, that increase to more than 200 foci until mid-zygotene, and decline to zero by mid to late pachytene, and associates with MSH4 at this time. However, unlike RPA, MSH4 localization persists into the beginning of the desynaptic diplotene stage (Kneitz et al., 2000; Santucci-Darmanin et al., 2000), and the functional implication of its interaction with RPA remains uncertain.

Male and female mice bearing targeted deletions of either Msh4 or Msh5 are sterile due to a lack of germ cells caused by defective meiosis (Figs. 2 and 3). In males, meiotic disruption occurs prior to, or prevents, complete synopsis (Fig. 4). However, these mice do not have a microsatellite instability phenotype as expected for a mismatch repair deficiency, there is no apparent increase in cancer incidence, and they are proficient in mismatch repair (de Vries et al., 1999; Edelmann et al., 1999; Kneitz et al., 2000). The similar phenotypes that result from deletion of either protein indicate that they interact together or in the same pathway during recombination and/or synopsis, and is supported by biochemical evidence of their interactions in mammalian germ cell extracts (P.E. Cohen, unpublished observations). During meiosis, spermatocytes from Msh4−/− or Msh5−/− male mice show apparent complete accumulation of axial element structures along homologous chromosomes, but this does not ensure successful pairing and synopsis. In some spermatocytes of these mutant animals RAD51 hyperlocalizes to chromosome cores, indicating either a failure of DSB resolution, or increased DSB formation that leads to apoptosis. By pachynema, when WT chromosomes show complete synopsis of
Fig. 3. Immunohistochemistry of ovaries from mice at day 18 of gestation (E18), day 4 post-partum (D4PP) and post-puberty (ADULT) from wild-type C57BL/6J mice (A, B, C), and from mice with targeted deletions of the MutS homologs, Msh4 (D, E, F) and Msh5 (G, H, I). (A) GCNA1 staining of ovary sections from wild-type Msh4+/+ mice on a C57BL/6J background indicates that at day 18 of gestation the ovaries have large numbers of prophase I and interstitial cells. (B) GCNA1 staining of D4PP ovary sections indicates that the number of prophase I cells declines as oocytes progress into dictyate arrest, and primordial follicles start to form. (C) H&E staining of adult ovary sections showing normally developing pre-antral and antral follicles. (D) GCNA1 staining of E18 ovary sections from an Msh4−/− fetus. At this early stage of development these ovaries have no noticeably lower numbers of prophase I stage cells. (E) GCNA1 of D4PP ovaries from Msh4−/− females shows that by this stage there are markedly fewer prophase I cells compared with wild type, and there are no primordial follicles, due to cells arresting prior to full synapsis in pachynema. (F) H&E of Msh4−/− post-pubertal, adult, ovaries indicates a heterogeneous phenotype, a proportion of ovaries contain fibrous tissue devoid of oocytes, as in F, and others are devoid of all tissue including oocytes, as in I. Interestingly, some fetuses have one ovary that looks like F and the other looks like I. (G) GCNA1 staining of ovary sections from E18 Msh5−/− fetuses. Like Msh4−/− ovaries these mice do not have a noticeably lower number of prophase I oocytes compared with wild type. (H) GCNA1 staining of ovary sections from D4PP Msh5−/− mice indicates that, like Msh4−/− ovaries, there are no primary follicles forming and there are fewer prophase I cells than wild type, due to disruption of meiosis prior to full pachytene synapsis. (I) H&E staining of adult ovary sections from Msh5−/− mice. As with Msh4−/− mice, the ovarian phenotype is heterogeneous, with some appearing as in F and some as in I. * = Ovarian bursa.

autosomes and of the XY pseudoautosomal region (PAR), spermatocytes from Msh4−/− and Msh5−/− deficient mice exhibit massive failure of synapsis, with almost no fully/normally synapsed bivalents being observed (Fig. 4).

Prophase I occurs during gestation in female mammals, and ovaries from Msh4−/− and Msh5−/− females at mouse embryonic day (E)18.5 show normal numbers of oocytes compared to wildtype ovaries of the same gestational age (Fig. 3). However, shortly after birth when oocytes are normally still progressing toward dictyate arrest, the number of pre-meiotic and prophase I germ cells, as detected by germ cell nuclear antigen 1 (GCNA1) immunoreactivity (Wang and Enders, 1996), is significantly diminished in Msh4−/− and Msh5−/− females compared to wild type (Edelmann et al., 1999; Kneitz et al., 2000). By 6 days post-partum (pp) the ovaries of Msh4−/− and Msh5−/− females are almost completely devoid of GCNA1 signal, whereas wild-type mice still have significant levels of immunoreactivity (Edelmann et al., 1999; Kneitz et al., 2000), indicating the complete loss of oocytes by one week of age (Fig. 3).

Chromosomal analysis of meiotic progression in oocytes from MSH4- and MSH5-deficient mice reveals similar meiotic disruption to that seen in males of the same genotype. Oocytes from Msh4−/− females show significant disruption of synapsis at zygonema, though more regions of synapsis are evident in the female germ cells than seen in the male germ cells, perhaps reflecting differences in regulation and/or meiotic checkpoint stringency
Fig. 4. Immunofluorescent representation of synaptic progression as determined by SCP3 (red), SCP1 (green) and centromere, CREST (blue) labeling, through meiotic prophase I in male mice deficient for MutS homologs (A, B, C, D, E) and wild type (similar to MutL homologs; F, G, H, I, J).

(A) *Msh4*−/− spermatocyte during early prophase I (leptotene stage). The chromosome cores, as indicated by SCP3 (red), are just beginning to form, there are 40 unpaired centromeres, and there is no synapsis (as indicated by SCP1, green). (B) Chromosome core formation progresses and some synapsis begins (as indicated by the green areas). (C) Synapsis, and SCP1 localization, increases as zygonema progresses. (D) In *Msh4*−/− mouse spermatocytes (shown) and *Msh5*−/− mouse spermatocytes (not shown) synapsis is never completed. Here the chromosome cores are compacted but there are 35 centromeres (a mixture of paired and unpaired). (E) This figure shows the maximal amount of synapsis found in both *Msh4*−/− and *Msh5*−/− mice, here there are 28 centromeres (a mixture of paired and unpaired) and SCP1 only localizes to a few synapsed regions, compared to 20 paired centromeres and complete localization of SCP1 between all homologs (and the X-Y pseudoautosomal region) in wild type. (F) Wild-type (shown), *Mlh1*−/− (not shown), and *Mlh3*−/− (not shown) mouse spermatocytes, chromosome cores begin to form during early prophase I (leptonema) and there are 40 unpaired centromeres. (G) As leptonema progresses, some synapsis is initiated. (H) During zygonema synapsis and centromere pairing progresses. (I) During pachynema synapsis is complete, SCs compact, and there are 20 paired centromeres. (J) During late prophase I (diplonema) the SCP1 synaptic component is gradually lost from the SCs and the homologs repel one another. An overlap of green and red fluorescence results in yellow coloring.

between the sexes (Edelmann et al., 1999; Kneitz et al., 2000). Thus, in both male and female mice, the consequence of MSH4 or MSH5 loss is more severe than in yeast and worms, with failure of pairing and synapsis and non-homologous associations in the former, and apparently normal synapsis in the latter.

MLH1

In *S. cerevisiae*, Mlh1 is essential for ensuring appropriate levels of crossing over during meiosis, while analysis of *mlh1msh4* double mutant strains indicates that the two act in the same pathway to maintain recombination rates (Hunter and Borts, 1997). Mutants for *mlh1* display increased non-disjunction, coupled with higher rates of post-meiotic segregation (Borts et al., 2000).

In mice, electron microscope (EM) defined meiotic nodules localize to the SC throughout prophase I. Nodules that occur late in prophase I correspond in number and distribution with chiasmata, the sites of reciprocal exchange, and as such are referred to as recombination nodules (Carpenter, 1975). MLH1 immunofluorescence shows that localization to SCs begins during mid-pachynema, and the number and distribution pattern of MLH1 foci correspond to that of chiasmata, both in mice and in humans (Tease, 1978; Baker et al., 1996; Barlow and Hulten, 1998; Anderson et al., 1999; Woods et al., 1999; Tease et al., 2002). EM analysis of the protein components of meiotic nodules throughout prophase I indicates that MLH1 is a component of only the recombination nodules and thus marks the sites of crossing over in mice and humans (Tease et al., 2002). Variability in the total number of MLH1 foci at pachynema is consistent with sex-specific differences in genetic exchange, that is higher in females than in males, confirming that MLH1 marks the sites of reciprocal exchange (Anderson et al., 1999; Woods et al., 1999; Koehler et al., 2002; Lynn et al., 2002). The number of MLH1 foci per bivalent correlates with the length of the SC, in that longer SCs have more foci than do...
shorter ones, consistent with non-random, interference regulation of crossing over. However, the relationship between length and number only holds after each bivalent has at least one focus, meaning that short (less than 6 μm) SCs have more than the expected number of foci, as predicted by length (Froenicke et al., 2002; Kleckner et al., 2003).

Mlh1−/− male and female mice are sterile as a result of meiotic failure during prophase I. In the case of *Mlh1* null males, chromosomes undergo normal synopsis and initiation of recombination, as demonstrated by the accumulation of SC proteins (Baker et al., 1996; Cohen and Pollard, 2001) and the appearance of phosphorylated histone H2AX and RAD51 at leptotene and zygonema (P.E. Cohen, unpublished observations). By pachynema, chromosome cores from *Mlh1*−/− mouse spermatocytes are fully synapsed and progress normally through to diplonema (Baker et al., 1996). However, at least 10-fold fewer chiasmata are formed, or stabilized, such that only a few residual meiotic nodules are observed at pachytene (N.K. Kolas, A. Svetlanov, P.E. Cohen, manuscript in preparation). As a result most homologs cannot remain associated after desynapsis, resulting in the appearance of univalents during diplotene, and testis that are completely devoid of mature sperm (Fig. 5).

In adult *Mlh1*−/− females, oocytes look remarkably healthy and ovarian follicles are observed at all stages of follicular growth (Edelmann et al., 1996). However, these oocytes fail to fertilize properly and are not viable (Edelmann et al., 1996). Thus, chiasma loss results in both male and female sterility at, or after, diplotene (Baker et al., 1996; Edelmann et al., 1996). Oocyte chromosomes from *Mlh1*−/− females do not align properly at metaphase and cannot form a proper spindle (Woods et al., 1999). These oocytes show multiple abnormalities in spindle formation and polar body extrusion, and the few that make it past MI cannot proceed past the two-cell zygote stage (Edelmann et al., 1996; Woods et al., 1999; Eaker et al., 2002). By contrast, spermatocyte spindles are apparently undisrupted by scattered chromosomes (Eaker et al., 2002), but the lack of appropriate spindle tension results in apoptosis at or before metaphase I (Eaker et al., 2002). Thus, while the deficiency in chiasma maintenance is similar for male and female *Mlh1*−/− animals, the apoptotic response is quite different, suggesting distinct checkpoint mechanisms in males and females. In addition, the phenotypic consequence to oocyte meiosis in *Mlh1* null females is quite different to that seen in mice lacking either MSH4 or MSH5, since the meiotic failure occurs later in the absence of MLH1, and thus the oocytes may escape elimination at a pachytene checkpoint. Instead, oocytes from *Mlh1*−/− females enter diplonema and then diurate arrest after birth, as in wild type, and it is not until meiosis resumes at ovulation that the meiotic defects are manifested.

MLH3

All evidence points to MLH1 as a molecular marker of reciprocal exchange raising the question as to its MutL-binding partner at these sites. Immunolocalization and immunoprecipitation studies indicate that this partner is MLH3 (Fig. 6). Indeed, analysis of yeast mutants for *mlh3* indicates similar reductions in crossing over to that seen in *mlh1* mutant strains, while crossing over appears unaffected in *mlh2* or *pms1* mutant strains (Wang et al., 1999). Interestingly, however, in mice MLH3 binds to SCs as early as late zygoneme/early pachytene, prior to MLH1 (Lipkin et al., 2002). Furthermore, once MLH1 does bind to these sites, there are consistently two or three MLH3 foci that do not coincide with an MLH1 focus raising the possibility that those MLH3 lone foci (a) still have yet to bind MLH1, (b) are present alone or as a homodimer, or (c) may be interacting with another MutL homolog binding partner (Lipkin et al., 2002), though biochemical evidence is lacking for a functional interaction between MLH3 and PMS2, the most likely candidate. Interestingly, the development of recombination nodules, and thus crossovers, is dependent on MLH3. In *Mlh3*−/− spermatocytes and oocytes, no meiotic nodules can be found at the EM level after zygonyne, and there are no MLH1 foci identified both at the EM and LM level (Lipkin et al., 2002). On the other hand, when *Mlh1* is deleted, several MLH3 foci remain at the late EM-defined nodules (N.K. Kolas, A. Svetlanov and P.E. Cohen, manuscript in preparation), but the status of these nodules (recombinational or otherwise) is uncertain. The persistence of several chiasmata at metaphase I in male *Mlh1*−/− mice suggests that the MLH3 foci localize to sites of exchange and MLH1 may be required for maintenance (Baker et al., 1996; Edelmann et al., 1996).

With the exception of the residual crossovers observed in spermatocytes from *Mlh1* null males, the meiotic phenotype of *Mlh3*−/− mice is similar to that seen for the *Mlh1* null animals (Fig. 5). Male mice are sterile as a result of prophase I defects occurring at pachynema and into diplonema (Lipkin et al., 2002) such that air-dried chromosome preparations at metaphase I reveal mostly achiasmate univalent chromosomes. Interestingly, MLH1 fails to localize to these chromosomes at pachynema in the absence of MLH3 suggesting, as mentioned above, that MLH3 is recruited to meiotic nodules first, followed by MLH1. Thus, by mid-pachynema, spermatocytes from *Mlh3*−/− fail to accumulate both MLH1 and MLH3 on their chromosome cores, appear to have no identifiable recombination nodules, and have no chiasmata. As a consequence, chromosomes fail to remain synapsed after breakdown of the central element of the SC at diplonema. Similar to *Mlh1*−/− mice, *Mlh3*−/− females have normal-sized ovaries containing an apparently full complement of follicles at all stages of development (Lipkin et al., 2002). However, oocytes from these ovaries fail to undergo proper fertilization due to their severe reduction in reciprocal recombination events.

Like MLH1, MLH3 has also been found to colocalize with replication protein A (RPA) in mouse spermatocyte preparations (Lipkin et al., 2002). RPA, a homolog of *E. coli* single-strand binding protein, localizes to the SCs just downstream of the RecA homologs RAD51 and DMC1. RPA is thought to play a role in homolog recognition by binding single-stranded intermediates (Ashley et al., 1995; Moens et al., 1997, 2002; Tarsounas et al., 1999). EM analysis of mouse SCs shows that RPA colocalizes with MSH4 and MLH3 (Lipkin et al., 2002; Moens et al., 2002). Whether MLH3, MSH4 and MSH5 colocalize on the SC still remains to be seen but in vitro experiments indicate that MLH3 and MSH4 can interact (Santucci-Darmanin et al., 2002) and MLH1 and MSH4 colocalize at MNs (Santucci-Darmanin et al., 2000).
Fig. 5. Immunohistochemistry of post-pubertal testes from wild-type mice (A, D) and from mice with targeted deletions of the MutL homologs, \(\textit{Mlh1} \) (B, E) and \(\textit{Mlh3} \) (C, F). (A) H&E staining of testis sections from a wild-type C57BL/6J mouse. The testicular seminiferous tubules contain a base layer of Sertoli cells and spermatogonia, with progressing stages of spermatogenic cells radiating into the lumen of the tubule. (B) H&E-stained testis sections from an \(\textit{Mlh1}^{-/-} \) mouse. (C) H&E-stained testis sections from an \(\textit{Mlh3}^{-/-} \) mouse. Notice that in B and C the testes have apparently normal numbers of Sertoli cells and spermatogonia but there are fewer primary spermatocytes and the tubules are devoid of secondary spermatocytes and later cells, including mature spermatids, and the mice are subsequently sterile. Testes from \(\textit{Mlh1}^{-/-} \) males appear more devoid of spermatogenic cells than do their \(\textit{Mlh3}^{-/-} \) counterparts. In both cases, Leydig cells (outside the seminiferous tubules) appear normal. (D) TUNEL labeling for apoptotic cells in a testis section from a wild-type mouse. The arrows indicate the brown, positively stained, apoptotic cells. (E) TUNEL of \(\textit{Mlh1}^{-/-} \) testes. (F) TUNEL of \(\textit{Mlh3}^{-/-} \) mouse testes. Notice the increased proportion of TUNEL positive cells in E and F, due to a loss of chiasmata and subsequent metaphase I checkpoint activation, in the absence of either \(\textit{Mlh1} \) or \(\textit{Mlh3} \). Bar = 100 \(\mu \)m.

Fig. 6. Immunolocalization of MutL homologs, MLH1 and MLH3, to the synaptonemal complexes of mouse pachytene-stage spermatocytes. (A) Immunolocalization of MLH1 (bright green foci), the SC component SCP3 (green) and the centromeres recognized by human CREST antibody (blue). Both of these MLH1 and SCP3 antibodies are raised in mouse and are secondarily recognized by an antibody conjugated to FITC. The SCP3 is titrated to a minimal amount, that still recognizes cores, to allow the MLH1 foci to stand out. (B) Immunolocalization of MLH1, SCP3, CREST and MLH3. The same field of view as in A, with green MLH1 and SCP3, showing MLH3 (red) localization. The majority of the MLH3 foci overlap with MLH1 foci, resulting in a yellow color. Three MLH3 foci (circled) in this picture do not coincide with MLH1 foci. Either these MLH3 lone foci have yet to acquire MLH1, or they are a separate subset of MLH3 foci, of unknown function, that never acquire MLH1.
The mammalian protein PMS2 is orthologous to yeast Post Meiotic Segregation 1 (Pms1). Yeast, *pms1* mutants exhibit a pronounced mutator phenotype characteristic of genes encoding MMR proteins. Moreover, as its name implies, these mutants exhibit deviations from the expected Mendelian segregation of markers (4:4, 6:2 and 2:6) during tetrad analysis, instead resulting in the recovery of allelic ratios of 5:3 or 3:5. This increased post-meiotic segregation phenotype is proposed to arise from a failure to repair mismatches in heteroduplex DNA (Wang et al., 1999). Human individuals bearing heterozygous mutations in PMS2 show an increased predisposition to colorectal and other cancers that are characterized by microsatellite instability (Kolodner and Alani, 1994; Lynch and Smyrk, 1996). Mutations in mouse *satellite instability* (Kolodner and Alani, 1994; Lynch and Smyrk, 1996) resulted in the recovery of allelic ratios of 5:3 or 3:5.

Male Pms2–/– mouse mutants are sterile as a result of meiosis I disruption, but unlike the phenotypes of *Mlh1* and *Mlh3* null males, the meiotic disruption is less tractable. Instead, spermatocytes are lost progressively through prophase I, with increased non-homologous chromosomal interactions being reported along with defects in chromosome synopsis (Baker et al., 1995). Interestingly, however, much of the meiotic defect appears to be strain-dependent (A. Svetlanov, M. Lenzi, N. Kolas, and P. Cohen, manuscript in preparation), though in all cases the males are sterile, producing few sperm that are nonviable (Baker et al., 1995). These data suggest a role for PMS2 in mammalian meiosis, but one that remains unclear at the current time.

While *Pms2* null males are sterile, the null females remain fertile, suggesting that PMS2 is required only for male meiotic progression. Furthermore, studies in our laboratory have indicated that MLH1 and MLH3 localize normally to late meiotic nodules in *Pms2*–/– males (A. Svetlanov, M. Lenzi, N. Kolas, and P. Cohen, manuscript in preparation), suggesting that reciprocal recombination events occur normally in the absence of PMS2. In view of the yeast data indicating a role for Pms1 in gene conversion, these data indicate that mammalian PMS2 may play a role in heteroduplex directed meiotic mismatch repair, rather than a role in reciprocal exchange events per se.

Other MMR proteins

Msh2 is transcribed in mouse testis (Richardson et al., 2000); however, protein immunolocalization is still elusive. Similar information concerning other MutS homologs remains limited. However, *Msh2*, *Msh3* and *Msh6* null mice are all fertile and give rise to apparently normal litter sizes (de Wind et al., 1995, 1999; Reitmair et al., 1995; Edelmann et al., 1997, 2000), suggesting that their roles in meiotic progression and recombination are minimal, or perhaps redundant. *S. cerevisiae* Msh2 and Msh6 have been shown to bind Holliday junctions in vitro, while Msh4 and Msh5 have not (Alani et al., 1997). In yeast, there may be a role for MMR in heteroduplex rejection (i.e. unwinding of heteroduplex), and MSH2 and PMS2 play anti-homeologous recombination roles during mitotic MMR in both yeast and mice. However, studies to date indicate that homeologous recombination is not increased during meiosis in *Msh2* and *Pms2* null mice (Qin et al., 2002).

Downstream of mismatch recognition in the MMR pathway are the 3′-5′ and 5′-3′ exo-endonucleases that serve to remove mismatched bases, and thus they initiate mismatch correction. In eukaryotes, only the 5′-3′ exonuclease, EXO1, has thus far been identified and characterized. EXO1 belongs to the Rad2 gene family and was originally identified in *S. pombe* in a screen for meiotically-induced genes (Szankasi and Smith, 1995). Further studies revealed that it plays a role in mutation avoidance in both *S. pombe* and *S. cerevisiae* (Johnson et al., 1998; Qiu et al., 1998; Rudolph et al., 1998), and that it interacts biochemically with Msh2, Mlh1 and Pms1 (Tishkoff et al., 1997; Rudolph et al., 1998; Tran et al., 2001). Interestingly, the enhanced mutation rate in *exol* yeast mutants carrying weak mutator mutations in *mlh1, pms1* and *msh2* suggest an additional role for EXO1 in stabilizing the MMR complex at mismatch sites (Amin et al., 2001).

The role of yeast Exo1 in meiosis was demonstrated by the observation that *exo1* mutant *S. pombe* and *S. cerevisiae* strains exhibit increased meiosis I non-disjunction and reduced recombination (Borts et al., 2000; Khazanehdari and Borts, 2000; Kirkpatrick et al., 2000; Tsubouchi and Ogawa, 2000). However, its role has been the subject of considerable debate (reviewed by Hoffmann and Borts, this issue). In *S. cerevisiae*, Exo1 acts in the same pathway as Msh4 for intergenic recombination and crossing over, but appears to affect spore viability independently of both Msh4 and Msh5 (Khazanehdari and Borts, 2000; Kirkpatrick et al., 2000). On the basis of these, and other data, it was suggested that Exo1 functions to process a subset of recombination intermediates by generating single-stranded tails, while MSH4/5 functions to resolve recombination intermediates and to establish crossover interference (Khazanehdari and Borts, 2000).

Like its yeast counterpart, human EXO1 exhibits 5′-3′ exo-endonuclease activity and interacts biochemically with MSH2 and MLH1 (Tishkoff et al., 1998; Lee and Wilson, 1999; Lee Bi et al., 2002). Mouse EXO1 is highly expressed in lymphoid tissue and meiotic cells (Lee et al., 1999), possesses 5′-3′ exonuclease activity, and is required for the repair of base:base and single-base insertion/deletion mismatches (Wei et al., 2003). Interestingly, extracts from *Exol* mutant mouse ES cells are deficient in both 5′ and 3′ directed repair, indicating that EXO1 is required for both 5′-3′ and 3′-5′ directed mismatch repair. A similar observation was made for human EXO1, but in this case, the 3′ activity was MLH1-dependent, while the 5′ activity was not (Genschel et al., 2002; Genschel and Modrich, 2003).

Both male and female *Exol* mutant mice are sterile as a result of meiotic failure (Fig. 7). However, both spermatocytes and oocytes progress through early prophase I with wild-type levels of recombination, as demonstrated by the appropriate accumulation of MLH1 at meiotic nodules during pachynema (Wei et al., 2003). Spermatocytes from *Exol*–/– males progress until metaphase I but, while a spindle is evident at this stage, the chromosomes appear to be misaligned at the metaphase plate and are more likely to be found as univalents, rather than bivalent pairs (Wei et al., 2003). This failure of spindle alignment results in checkpoint activation and a switch to apoptosis.

The phenotype of *Exo1* null mice suggests that this exonuclease functions in post-pachytene events and not in early processing of DSBs, as appears to be the case for its yeast ortholog. However, these findings do not rule out an earlier, less essential, or partially redundant, role for EXO1 in mammalian meiosis. Alternatively, other exonucleases might substitute for EXO1 during early DSB processing in mammalian germ cells, including MRE11. However, the exonuclease activity of MRE11 occurs in the 3'-5' direction, suggesting perhaps that the endonuclease activity of MRE11 might instead substitute for EXO1 at this early stage, in combination with its binding partners, RAD50 and NBS (Moreau et al., 2001).

Postulating the functions of the MMR proteins in mammalian meiosis

The DSB repair (DSBR) model (Szostak et al., 1983) has undergone considerable evolution since it was first proposed, and has gained more acceptance as intermediates of reciprocal recombination, double-strand breaks, 5' resected DNA, single-end invasion molecules and double Holliday junctions have all been physically identified and temporally defined in yeast (Schwacha and Kleckner, 1995; Paques and Haber, 1999). Recent evidence has demonstrated that the DSB initiating events can be resolved, following single-end invasion, through non-crossover (gene conversion) and crossover events that are processed through temporally and mechanistically-distinct pathways (Paques and Haber, 1999; Allers and Lichten, 2001b; De Los Santos et al., 2003). Thus, DSB formation, resection and strand invasion result in one of two pathways. In the first, second-end capture, DNA synthesis and ligation result in mature dHJs that may be resolved as crossovers or non-crossovers, depending on the polarity of cutting at each HJ (see Hoffmann and Borts, this issue, for further details). This first route encompasses the more traditional DSBR model. In the second scheme, known as synthesis-dependent strand annealing (SDSA), the invading strand is displaced and, following DNA synthesis, can anneal with the other, non-resected, DSB end (Allers and Lichten, 2001a). Following further DNA synthesis and ligation, only non-crossover products are obtained. In both models, all possible outcomes involve heteroduplex DNA, but it is only in the DSBR model that such heteroduplex DNA is actually incorporated into the recombination intermediate structures. This fact is important when considering the role of MMR proteins in processing of such intermediates and in the final resolution of recombination via these two mechanisms.

The preceding adjustment to our understanding of yeast recombination prompts us to reevaluate the role of the MMR proteins in gene conversion and reciprocal recombination events. Since the majority of DSBs in yeast are resolved as dHJ-related reciprocal events following stabilization of these structures by Msh4-Msh5, it has been suggested that Msh4-Msh5 binding might bias dHJ resolution towards reciprocal events, perhaps by ensuring second-end capture and/or by promoting dHJ formation, or by restricting access to the SDSA pathway. In addition, once the DSBR pathway is selected, presumably a similar mechanism must ensure that dHJs are resolved to produce crossovers rather than non-crossovers. The mechanisms for such biasing are unclear at present.

In mammals the number of DSBs, as recognized by RAD51/DMC1 foci at zygonema, outnumber the eventual crossovers by 10-fold (Ashley et al., 1995; Cohen and Pollard, 2001; Moens et al., 2002). The number of crossovers amounts to approximately 24 in each spermatocyte (Baker et al., 1996; Anderson et al., 1999) and approximately 27 in oocytes (M. Lenzi, A. Svetlanov, N.K. Kolas, and P.E. Cohen, manuscript in preparation). The mechanisms by which the 250–350 or so DSBs become pared down to 24–27 crossover events is unclear, but it seems highly plausible that gene conversion events might be a way to reduce/resolve a proportion of the DSB numbers. In addition, gene conversion could account for the redistribution of polymorphisms within the mammalian genome (Fogel and Mortimer, 1969). That these events might, at least initially, involve MSH4 is illustrated by the observation of >150 MSH4 foci on SC cores at zygonema, a number that declines as the number of meiotic nodules gets pared down through to mid-pachynema, at which time the number of MSH4 foci is approximately 47 (Knizt et al., 2000). By contrast, in yeast, approximately 55 Msh4-Msh5-positive foci are observed at pachynema, compared to an average of 90 eventual crossovers that occur in this species (Novak et al., 2001). Indeed, yeast studies have indicated that Msh4-positive...
Fig. 8. Model for MMR protein-directed selection of crossover sites during prophase I of mammalian meiosis. During leptone-
ma, MSH4 appears to bind to some of the sites of double-strand breaks, which exceed the eventual number of crossovers by 10-fold.
Of the approximately 150 MSH4 foci on mammalian SCs at zygonema we propose that about 100 are “deselected” from the pool of
possible reciprocal recombinants. The 47 foci observed during mid-pachynema would then mark the sites of double Holliday
junctions, each of which can be resolved to either a non-crossover or crossover (marked by 25–27 MLH1/MLH3 localization)
product, the distribution of which is regulated by interference.

foci might only represent a subset of reciprocal recombinant
events. The conserved endonuclease complex Mus81/Mms4
may direct one relatively minor class of crossovers primarily
on smaller chromosomes, which are not subject to interference. Accordingly, S. pombe have no Msh4 or Msh5 homologs,
and no SC, and their crossover sites are not subject to inter-
ference, instead occurring through the Mus81 and Emel (the
S. pombe homolog of Mms4) pathway (Boddy et al., 2001;
De Los Santos et al., 2003).

Therefore the differences between yeast and mice are as fol-

dows: in yeast, few non-crossover events are seen, and the num-
ber of reciprocal recombination events observed exceeds the
final number of Msh4 foci, suggesting two species of crossover
event (one that is Msh4-dependent and one that is not). In mice
the dynamics of recombination appear to be quite different.
Firstly, the number of DSBs at leptonema is approximately 10-
fold higher than the eventual number of reciprocal recombina-
tion events that arise at pachynema. Of these 250 or so DSB
sites, only about 150 acquire MSH4 (and presumably MSH5)
at zygonema (Fig. 8). We would propose that these 150 sites
represent the total number of substrates for strand invasion and
and further processing of recombination, with the other 200+ sites
being repaired by other means. Of the sites that undergo further
processing, approximately 70% become resolved prior to entry
into pachynema as assessed by a decline to some 47 MSH4 sites
observed at pachynema. Following the yeast two-pathway mod-
el (DSBR and SDSA), one could envisage that the 100 or so sites
resolved prior to pachynema are substrates for the SDSA
recombination mechanism. The remaining 30% (47/150)
would then enter the DSBR pathway, forming joint molecules
and dHJ structures. Accordingly, if the resolution of dHJs
toward non-crossovers or crossovers occurs with equal proba-
bility, one would predict that half of these 47 DSBR sites
become crossovers and the other half become non-crossovers.
Consistent with this, approximately 53% of the total pachy-
tene-MSH4 sites (25/47) become reciprocal recombination
events, as assessed by the accumulation of both MLH1 and
MLH3, while the other 47% presumably become resolved as
non-crossovers (Fig. 8).

In such a scenario, mouse MSH4 would not bias resolution
towards crossovers, as is the case for yeast Msh4, nor would it
specifically associate with double Holliday junctions, but in-
stead perhaps an earlier occurring DNA joint molecule struc-
ture. Similarly, unlike yeast, such a model would imply that
MSH4 alone is not sufficient to establish interference. Instead,
this model suggests that it is MLH3 localization that biases the
system towards crossover formation, and that the mechanisms
responsible for this loading are what define interference in
mouse germ cells. The molecular basis for this mechanism
remains unclear, but it is possible that helicases such as MER3
or BLM (together with TOPIIIa) may mediate a switch towards
the SDSA pathway at zygonema, possibly by preventing sec-
ond-end capture and/or by encouraging annealing to the origi-
nal DSB strand. Indeed in yeast the action of Msh4 on interfer-
ence might be mediated in part by its interaction with the RecQ
helicase, Sgs1. In mice too, it appears that MSH4 interacts with
the RecQ helicase, BLM, in spermatocyte extracts (P.E. Cohen,
unpublished observations).

The working model is that mammals and other large
genome organisms have high rates of DSB induction at the
onset of prophase I which must be resolved by the completion
of prophase I, with only a tenth resulting in crossovers. That
there is yet no satisfactory way of tracking mammalian meiosis
in culture, nor for isolating their recombination intermediates,
forces us to rely on extrapolation from yeast and biochemical
data, both of which are limited in that they do not address the
level of genome complexity. In addition, such comparative
biology fails to address the functions of mammalian-specific meiotic genes such as Mei1. That MSH4/MSH5 has been
proposed to bias dHJ toward crossing over does not fit with the
observation in mammals that MSH4 localizes to two to three
times more sites than there are crossovers. Thus we propose
that a subset of MSH4/5 sites, bound to DNA joint molecule
intermediates, are marked, perhaps by BLM, and “deselected”
from the total number of sites that can become dHJ. Thus, the 47 MSH4 sites at pachytene are the subset bound to mature dHJs. By an as yet undetermined mechanism MLH3 is targeted to a subset of these dHJs in a manner consistent with positive interference, and these sites go on to acquire positive MLH1 and be resolved as reciprocal recombinant/crossover events. As such the DNA recognition function of the mismatch repair family of proteins have been employed to influence the outcome of DSB repair. Future studies addressing these hypotheses should significantly advance our understanding of meiosis in complex organisms.

References

Santucci-Darmanin S, Neyton S, Lespinasse F, Sau-
tries A, Gaudray P, Paquis-Flucklinger V: The
mier C, Ashley T, Paquis-Flucklinger V: MSH4
families in DNA recombination RNA primer
Tsubouchi H, Ogawa H: Exo1 roles for repair of DNA
later junctions as intermediates in meiotic recom-

Guan MX, Bailis AM, Shen B: Inactivation of Exo1
results in DNA mismatch repair defects, increased
cancer susceptibility and male and female sterility.

Wujcik NJ, Khan PM, Vazen H, Menko F, van der Kolf

Schar P, Baur M, Schneider C, Kohli J: Mismatch repair in Schizosaccharomyces pombe requires the

Schmutte C, Sadoff MM, Shim KS, Acharya S, Fisher
R: The interaction of DNA mismatch repair pro-

Schoffeld MJ, Hsieh P: DNA mismatch repair: mole-

Schwacha A, Kleckner N: Identification of double hol-
iday junctions as intermediates in meiotic recom-

Sugawara N, Paques F, Colak M, Haber JE: Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced re-

Sankezi P, Smith GR: A role for exonuclease I from S. pombe in mutation avoidance and mismatch cor-

Snozak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW: The double-strand-break repair model for recom-

Tarsounas M, Morita T, Pearlman RE, Moens PB: RAD51 and DMC1 form mixed complexes associ-

Tease C: Cytological detection of crossing-over in BUDR substituted meiotic chromosomes using the

Tease C, Hartshorne GM, Hulten MA: Patterns of

Tijsterman M, Potgieter J, Plasterk RH: Frequent germ-

Tisskoff DX, Boerger AL, Bertrand P, Filosi N, Gaida
KM, GF, Kolodner RD: Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts

Tisskoff DX, Amin NS, Viars CS, Arden KC, Kolod-

Willis KK, Klein HL: Intrachromosomal recombinac-
ion in Saccharomyces cerevisiae: reciprocal ex-

Winand NJ, Panzer JA, Kolodner RD: Cloning and charac-

Zetka MC, Rose AM: Mutant rec-1 eliminates the
intergenic region of the inversion in Escherichia coli.

Zalevsky J, MacQueen AJ, Duffy JB, Kemphues KJ,
Hunt PA: Chromosomal influence on meiotic spin-

Yamaguchi M, Gats A, Klebejek S, Varesco L, Ber-
tero L, Buggard ML, Mio J, Kolodner R, Padde-

Zelikovitz Y, MacQueen AF, Duffy JB, Kemphues KJ, Villeneuve AM: Crossing over during Caenorhab-
ditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in bud-

Zetka MC, Rose AM: Mutant rec-1 eliminates the
intergenic region of the inversion in Escherichia coli.

Zalevsky J, MacQueen AJ, Duffy JB, Kemphues KJ,
Kenezi R, Ban Y, Lengao K, Moller R, Edel-
issen I, Najengast F, Meijers–Heijboer EJ, Lindhout D,
Griffioen G, Cats A, Klebejek S, Varesco L, Ber-
tero L, Buggard ML, Mio J, Kolodner R, Padde-

Zelikovitz Y, MacQueen AF, Duffy JB, Kemphues KJ, Villeneuve AM: Crossing over during Caenorhab-
ditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in bud-