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Abstract

NIMA-related kinase 1 (NEK1) is a serine/threonine and tyrosine kinase that is highly

expressed in mammalian germ cells. Mutations in Nek1 induce anemia, polycystic kidney

and infertility. In this study we evaluated the role of NEK1 in meiotic spindle formation in

both male and female gametes. Our results show that the lack of NEK1 provokes an abnor-

mal organization of the meiosis I spindle characterized by elongated and/or multipolar spin-

dles, and abnormal chromosome congression. The aberrant spindle structure is

concomitant with the disruption in localization and protein levels of myosin X (MYO10) and

α-adducin (ADD1), both of which are implicated in the regulation of spindle formation during

mitosis. Interaction of ADD1 with MYO10 is dependent on phosphorylation, whereby phos-

phorylation of ADD1 enables its binding to MYO10 on mitotic spindles. Reduction in ADD1

protein in NEK1 mutant mice is associated with hyperphosphorylation of ADD1, thereby pre-

venting the interaction with MYO10 during meiotic spindle formation. Our results reveal a

novel regulatory role for NEK1 in the regulation of spindle architecture and function during

meiosis.

Introduction

Meiosis is a specialized cell division characterized by a single round of DNA replication fol-

lowed by two rounds of chromosome segregation, resulting in the formation of haploid gam-

etes for sexual reproduction. At the first male meiotic division (MI), homologous (maternal

and paternal) chromosomes must segregate equally into two daughter cells, each of which then

undergoes a mitosis-like second meiotic division (MII) in which sister chromatids separate

into the haploid gametes. In mammals, meiosis in males results in four haploid gametes, while

meiosis in female results in one haploid gamete per meiosis, the remaining genetic material

being distributed between two polar bodies. Regardless of the sex of the individual, in order to

achieve accurate segregation at both divisions, tension must be established on the meiotic spin-

dles and this is achieved by the formation of crossovers between homologous chromosomes in

meiosis I, and by cohesion between sister chromatids in both meiosis I and meiosis II [1].
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Cohesion is also necessary for sister kinetochore attachment to microtubules during meiotic

spindle formation [2].

In eukaryotes, the microtubule spindle is the structure that orchestrates chromosome align-

ment and segregation during both mitotic and meiotic divisions [3]. In mitosis, the microtu-

bules that compose the spindle are mostly nucleated from centrosomes, which act as a major

microtubule organizing center (MTOC) [2–4]. Centrosomes are composed of pairs of centri-

oles surrounded by pericentriolar material (PCM) that posses microtubule nucleation activity.

When mitosis starts, centrosomes separate to opposite sides of the nuclear envelope, defining

the poles of the spindle and allowing the bipolar spindle [2,4]. However, there is a sexual dis-

morphism during the meiosis, where the male spindle behaves like a mitotic spindle, while in

oocytes, the spindle it is formed without centrosomes [4,5]. Another important difference is

the stringency of the spindle checkpoint in females, in which the oocyte still proceeds through

the first meiotic division despite disruptions in the spindle and chromosome congression at

metaphase plate [6]. Such differences in spindle dynamics in male and female mammals sug-

gest that different regulatory proteins may predominate in each sex.

Several families of kinases such as Polo kinases, Aurora kinases and NEK kinases have been

implicated in the regulation of cell cycle events in both mitosis and meiosis [7,8]. The founding

member of the NEK family is the Aspergillus nidulans never-in-mitosis-gene-A (NIMA) pro-

tein [9]. NIMA is a serine/threonine kinase involved in the initiation of mitosis and in promot-

ing chromosome condensation. Genetic ablation of NIMA results in cell cycle arrest at G2,

while overexpression of NIMA leads to premature entry into mitosis [7]. In mammals, there

are 11 orthologs of NIMA that comprise the NIMA-like (NEK) family of kinases. Nek1 is

unique in that it encodes both the serine/threonine kinase activity typical of the NEK family as

well as tyrosine kinase activity that is not a feature of other NEKs [10]. NEK1 has been impli-

cated in ciliogenesis [11] and DNA damage response [12–15]. Additionally, NEK1 is highly

expressed in mouse germ cells [16], where it appears to play essential roles in meiosis I and

possibly also at later stages [17,18].

The Kat2J allele of NEK1 is a spontaneous point mutation within the coding sequence of

Nek1 that results in a premature stop codon leading to a truncated protein lacking the both

kinase domains [16]. Nek1kat2j/kat2j mice display polycystic kidneys, dwarfism, anemia and

male sterility [16,19]. Interestingly, while initial reports mention that Nek1kat2j/kat2j females

had low fertility rates [16,19], in our animal facility females no pregnancies are observed [17]

possibly reflecting subtle background effects among mouse strains. Our previous studies of

meiosis in Nek1kat2j/kat2j mice showed that the loss of NEK1 activity induces aberrant retention

of cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3), at the end of

meiotic prophase I [17]. More recently, we showed NEK1 regulates cohesin removal, in part,

through regulation of wings apart-like homolog (WAPL) during meiotic prophase I [18], as

part of the so-called Prophase pathway for cohesin removal. This regulation of WAPL by

NEK1 is mediated through WAPL interactions with the cohesin-associated protein, PDS5

homolog B (PDS5B), and protein phosphatase 1 gamma (PP1γ), both of which also interact

with NEK1 [18].

In the current study, and given the conserved function of NEK proteins in spindle assembly

dynamics, we investigated the role of NEK1 downstream of prophase I events. Our results

demonstrate that loss of NEK1 induces failure of meiotic spindle organization in both males

and females, leading to elongated spindles, multipolar spindles, and abnormal chromosome

congression. Concurrent with this, we observe altered levels and localization of two proteins

known to regulate mitotic spindle dynamics: the unconventional myosin, myosin X (MYO10),

and α-adducin (ADD1). Interaction of ADD1 with MYO10 is dependent on phosphorylation

of ADD1 which allows for the interaction of these two proteins on mitotic spindles [20].
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Depletion of ADD1 or changes in its phosphorylation status results in abnormal mitotic spin-

dles [20]. Our studies demonstrate that loss of NEK1 kinase causes changes in MYO10 and

ADD1 protein levels, and hyperphosphorylation and deamination of ADD1 caused at least in

part by the abnormal function of PP1 during meiotic spindle formation. Interestingly spindle

phenotypes seem not directly related to the role of NEK1 in prophase I events.

Material and methods

Mice and genotyping

All mouse studies were conducted with the prior approval of the Cornell Institutional Animal

Care and Use Committee (Protocol 2010–0054). The mice were bred under pathogen-free,

controlled temperature (22±1˚C) and regulated humidity (50–55%) conditions with periods of

light/dark of 12 h and food available ad libitum. Mice were euthanized using CO2 administra-

tion method.

The Nek1kat2j/kat2j line was obtained originally from Jackson Laboratory (Bar Harbor,

Maine), and has been established in our mouse colony for more than nine years. Genotyping

of this mouse line was performed following the protocol described elsewhere [17]. For the pur-

poses of these studies, male mice were 8 weeks old and female where used at 24–28 days old.

Homozygous mutant animals of (Nek1kat2J/kat2J) were compared with wild type (Nek1+/+) lit-

termates on a C57Bl/6J background.

Male and female spindle preparation

Male spindle analysis was performed in testis from 8 week old mice following the protocol

described elsewhere [21,22]. Briefly, following euthanasia, the testes were removed, decapsu-

lated and placed in PBS. Using fine forceps, tubules were separated and analysed under a ste-

reomicroscope. Differential light absorption of the tubules creates different zones that can be

defined by different cell populations [22]. The differentent zones are consequence of the para-

crine regualtion by Sertoli cells, spermatogenesis proceeds in synchronized waves along the

seminiferus tubules, and every given cross-section contains only certain cell types, that pro-

duces a diferent light absorbation creating zones [22]. These zones are the weak spot that cor-

respond to the spermatogenic stages XII-I, the strong spot (stages II-VI), the dark zone (stages

VII-VIII) and the pale zone (stage IX-XI) We selected the zone corresponding to the sperma-

togenetic development XI and XII that are rich in meiotic cells during both meiosis I and mei-

osis II. Tubules were placed in fresh PBS and these required zones were excised and placed on

poly-lysine-coated slides (P4981, Thermo Fisher). Tubule sections were fixed for 10 minutes

(1% paraformaldehyde and 0.15% Triton-X, pH 9.2) and then squashed under a coverslip.

Slides with the squashed tubules were put into liquid nitrogen for 20 seconds and thereafter

the coverslip removed and washed with PBS-0.4% Kodak Photo flo (Kodak) (3 times for 5

minutes each). Slides were kept at -80˚C or stained immediately.

Female spindle analysis was performed with oocytes from 24–28 day old mice following

our previously published protocol [23]. Briefly, after dissection, ovaries were collected in col-

lection medium (Waymouths’s medium (11220035, Gibco), 10% Fetal bovine serum

(26140079, Gibco), 1% penicillin-streptomycin (P4333-100ML, Sigma-Aldrich) and 0.1%

sodium pyruvate (11360070, Gibco)). Oocytes were released from ovarian follicles using

30-gauge needles, and oocytes with germinal vesicles placed in EmbryoMax KSOM medium

(MR-121-D, EMD Millipore). Oocytes were cultured for 6hr in EmbryoMax KSOM medium

drops at 37˚C, 5% CO2. After incubation, oocytes were placed in fibrinogen-thrombin clot,

incubated for 60 seconds at 37˚C, and rinsed with 1XPBS containing 2% Triton-X (BP151-

500, Fisher Scientific) for 3 min. Oocytes were fixed for 30 minutes at 37˚C. Fixation was
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followed by a 15 minute wash in 0.1% NGS (5 ml 10X PBS, 50 μL goat serum and 50 ml Milli-

Q water). Oocytes were stored at 4˚C or stained immediately.

Spindle immunofluorescence staining

Male and female fixed spindles slides were washed in PBS containing 0.4%Kodak Photo flo

(Kodak) for 5 min, followed by 0.1% PBS-Triton X and blocked in 1XPBS-antibody dilution

buffer (ADB) before being incubated over night at 4˚C with the primary antibody. Primary

antibodies used were: rabbit anti-ADD1 (GTX101600, Genetex. Dilution 1:100), rabbit anti-

MYO10 (24565-1-AP, Proteintech. Dilution 1:100) and rabbit anti-β-tubulin (T8328, Sigma.

Dilution 1:500). After overnight incubation, slides were washed to remove the unbound anti-

bodies and incubate for 2 hours at 37˚C with Alexafluor™ secondary antibodies (Molecular

Probes Eugene OR, USA). Slides were washed and mounted with Prolong Gold antifade

(Molecular Probes). Image acquisition was performed using a Zeiss Imager Z1 microscope

under 20X, 40X or 63X magnifying objectives, at room temperature. Images were processed

using ZEN 2 (Carl Zeiss).

Mass spectrometry

Mass spectrometry was performed in the Cornell University Proteomics and Mass Spectrome-

try facility. 2D LC-MS/MS raw data files were acquired using Orbitrap Elite (Thermo Scien-

tific). We performed a database search using Mascot searching against the SwissProt mouse

database from Uniprot website (http://www.uniprot.org) using Mascot software version 2.3.02

(Matrix Science, UK). The default Mascot search settings were as follows: one missed cleavage

site by trypsin allowed with fixed MMTS modification of cysteine, fixed four-plex iTRAQ

modifications on Lys and N-terminal amines and variable modifications of methionine oxida-

tion, deamidation of Asn and Gln residues, and 4-plex iTRAQ on Tyr for iTRAQ 4-plex analy-

sis. One or two-missed cleavage site by trypsin allowed with fixed carboxamidomethyl

modification of cysteine, fixed six-plex TMT modifications on Lys and N-terminal amines and

variable modifications of methionine oxidation, deamidation of Asn and Gln residues, and

6-plex TMT on Tyr for TMT 6-plex analysis. The quantitative protein ratios were weighted

and normalized by the median ratio with outlier removal set automatic in Mascot for each set

of experiments. Only those proteins with ratios equivalents to two-fold increase or two-fold

reduction were considered significant. To obtain the specific post-traslational modification of

the peptides we perfumed TiO2 enrichment followed by the proteomics analysis as was

described above.

Western blotting

Whole testis protein and oocyte protein were extracted by sonication in RIPA buffer. Samples

were boiled for 5 min in sample buffer, electrophoresed on SDS-polyacrylamide gels (8%) and

transferred to nitrocellulose membranes. Primary antibody incubation was performed over-

night at 4˚C at 1:1000 dilution (antibodies are the same used in spindle staining). Incubation

with secondary antibodies was performed for two hours at room temperature (secondary HRP

conjugated antibodies were obtained from Pierce, Life Technologies). Signal-detection was

carried out using the superSignal substrate (Thermo Scientific). Loading control was per-

formed using GAPDH-HPR (PA1-987-HRP, from ThermoFisher). Images were captured with

BIO RAD Image Lab 5.1and analyzed by ImageJ version 1.49v (http://rsbweb.nih.gov/ij).
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Results

Loss of NEK1 induces abnormal meiotic spindle formation and failed

chromosome congression at the first meiotic division in males and

females

We analyzed the role of NEK1 in spindle formation and chromosome orientation at MI in

oocytes and spermatocytes from Nek1+/+ and Nek1kat2j/kat2j mice. In male mice, we evaluated

the shape, number of poles and misaligned chromosomes in both Nek1+/+ (n = 100) and

Nek1kat2j/kat2j (n = 100) spermatocytes. MI spindles from Nek1+/+ spermatocytes showed a

bipolar structure with the chromosomes aligned at metaphase plate (Fig 1a), while spindles

from Nek1kat2j/kat2j spermatocytes showed defects in the structure of the spindle as well as in

chromosome congression. These defects included MI spindles without a pole, with only one

pole, with misaligned chromosomes (Fig 1b), and with multiple poles (Fig 1c). A total of 55%

of spindles from Nek1kat2j/kat2j males were abnormal, while only 18% of the spindles from

Nek1+/+ male spermatocytes showed abnormalities (Fig 1d). Quantification of spindle abnor-

malities in Nek1+/+ and Nek1kat2j/kat2j spermatocytes reveals that the most common abnormal-

ity is misaligned chromosomes. The percentage of spindles with misaligned chromosomes in

Nek1+/+ was 18%, while in Nek1kat2j/kat2j mice the percentage reached 38%. Other observed

spindle abnormalities were absence of poles, one pole and multiple poles (Fig 1e)

The analysis of MI spindles in oocytes from Nek1+/+ females showed a bipolar structure of

the spindle and appropriate congression of the chromosomes at the metaphase plate (Fig 2a).

However, MI spindles from Nek1kat2j/kat2j females showed a distortion of the structure of the

spindle characterized by the presence of multiple spindles, mini spindles and misaligned chro-

mosomes (Fig 2b, 2c and 2d) (for a complete analysis of the oocyte spindle dynamics, see S1

Fig). We evaluated the percentage of abnormal spindles in both wildtype oocytes (n = 100) and

mutant oocytes (n = 100). In Nek1kat2j/kat2j female spindles, 82% of the MI spindles were abnor-

mal, while only 22% of the Nek1+/+ oocytes showed any abnormality (Fig 2e). Analysis of

oocyte spindle defects showed that the most frequent defect is misaligned chromosomes: the

number of oocytes with this defect 3.5 times higher in Nek1kat2j/kat2j (70 cells) compared to

Nek1+/+ oocytes (22 cells). No minispindles or mutipole spindles were observed in Nek1+/+

oocytes. Besides the differences observed in the spindle phenotype in male and female, our

results indicate that NEK1 is required for spindle formation during meiosis.

Nek1ka2tj/kat2j spermatocytes and oocytes have an abnormal spindle

length and width

The appropriate length and width of the spindle are critical for establishing tension during seg-

regation, and thus both parameters were evaluated them in male and female spindles. To per-

form this analysis in both male and female spindles we excluded all the cells that showed

spindles without a pole, one pole, multipole, and minispindles, only those with two poles were

evaluated. We measured the distance between poles in MI spermatocyte spindles and we

observed a significant increase of the length of Nek1kat2j/kat2j males (27.9 μm ± 7.0 s.d.) com-

pared to that of Nek1+/+ males (23.1 μm ± 2.0 s.d.; Unpaired t test p = 0.0020; Fig 3a). Increases

in MI spindle length in male spermatocytes were also accompanied with increases in the width

in MI spindles from Nek1kat2j/kat2j male mice (26.7 μm, ± 6.4 s.d.) compared to that of Nek1+/+

male mice (22.9 μm ± 2.1 s.d; Unpaired t test p = 0.0097; Fig 3b). We also analyzed the length

and width of the female spindles. Nek1kat2j/kat2j oocytes showed an increase in the length of the

spindle in MI oocytes (31.6μm ± 7.3 s.d.) compared to that found in Nek1+/+ females

(26.0 μm ± 2.3 s.d.; Unpaired t test p = 0.0007; Fig 3c). The lack of NEK1 also resulted in

NEK1 regulates the meiotic spindle

PLOS ONE | https://doi.org/10.1371/journal.pone.0185780 October 5, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0185780


altered width of the MI spindles in female meiosis. Nek1kat2j/kat2j oocytes showed a decrease in

the width of the spindle (15.1 μm ± 4.0 s.d.) compared to the Nek1+/+ oocyte spindles

(17.0 μm ± 1.7 s.d.; Unpaired t test p = 0.039; Fig 3d). Taken together our results show that

NEK1 is required for the establishment of the correct spindle length and width during meiosis

in both male and female gametes.

Fig 1. Loss of NEK1 results in disrupted spindle morphology and chromosome congression during meiosis I in spermatocytes.

(a-c) Immunofluorescence (IF) against β-tubulin (green) and DNA staining with DAPI (magenta) showing meiotic spindle morphology

(panels a1-c1), with graphic representations below (panels a2-c2). (A) Nek1+/+ spermatocyte shows normal spindle morphology and

chromosome congression at the midplate of the spindle; (b, c) Examples of aberrant spindle morphology in spermatocytes from Nek1kat2j/

kat2j mice showing monopolar spindles with mislocalized chromosomes resulting from failed chromosome congression (arrowheads) in b and

multipolar spindles in c (arrowheads). (d) Quantitation of abnormal spindles in spermatocytes from Nek1+/+ and Nek1kat2j/kat2j mice (n = 100

cells counted for each). (e) Quantitation cells with abnormal spindles by type of defect. Values are percentages ± Standard deviation. *
Indicates statistically significant differences (Unpaired t-test p < 0.05).

https://doi.org/10.1371/journal.pone.0185780.g001
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Lack of NEK1 results in deregulation of myosin X (MYO10) and α-

adducin (ADD1)

Given the disrupted spindle apparatus during meiosis I, we investigated possible protein tar-

gets of NEK1 to explain this phenotype. In a previous study, we had performed Mass spec-

trometry (MS) screening using testis protein extracts from Nek1+/+ and Nek1kat2j/kat2j mouse

[18]. Review of these data using GO terms for centrosome and centromeric proteins revealed

no significant differences in these proteins levels in Nek1kat2j/kat2j mouse extracts compared to

wildtype mice (S2 Fig). Several proteins associated with spindle formation and regulation were

Fig 2. Loss of NEK1 results in disrupted spindle morphology and chromosome congression during meiosis I in oocytes. (a-d)

Immunofluorescence (IF) against β-tubulin (green) and DNA staining with DAPI (magenta) showing meiotic spindle morphology (panels a1-d1), with

graphic representations below (panels a2-d2). (a) Nek1+/+ oocyte shows normal spindle morphology and chromosome congression at the midplate of the

spindle; (b-d) Examples of aberrant spindle morphology in oocytes from Nek1kat2j/kat2j mice showing multipolar spindles with or without errors in

chromosome congression (arrowheads indicate three extra spindles formed in the oocyte in b and two additional spindles in c). (e) Quantitation of

abnormal spindles in oocytes from Nek1+/+ and Nek1kat2j/kat2j mice (n = 100 cells counted for each). (f) Quantitation of cells with abnormal spindles by type

of defect. Values are percentages ± Standard deviation. * Indicates statistically significant differences (Unpaired t-test p < 0.05).

https://doi.org/10.1371/journal.pone.0185780.g002
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Fig 3. Lack of NEK1 results in abnormal meiosis I spindle morphology in spermatocytes and oocytes. (a)

Immunofluorescence (IF) against β-tubulin (green) and DNA staining with DAPI (magenta) showing a wildtype (top) and Nek1kat2j/

kat2j spermatocytes (bottom), along with measurements of spindle length (b) and width (c). Black bars are means (μm) ± Standard

deviation. (d) Immunofluorescence (IF) against β-tubulin (green) and DNA staining with DAPI (magenta) showing a wildtype (top)

and Nek1kat2j/kat2j (bottom) oocytes, along with measurements of spindle length (b) and width (c). Black bars are means (μm) ±
Standard deviation. * Indicates statistically significant differences (Unpaired t-test p < 0.05).

https://doi.org/10.1371/journal.pone.0185780.g003
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identified and quantified, however no differences between Nek1+/+ and Nek1kat2j/kat2j mouse

were observed for tubulins, actins and SAC proteins (S3–S5 Figs).

Previous reports showed that MYO10 has a direct function in spindle formation [24–26].

In contrast to the tubulins, actins, and other spindle proteins that did not appear to be altered

in the absence of NEK1, we observed that the levels of the myosins, MYO5, MYO7A, MYO10

and MYO15, were significantly increased in testis protein extracts from Nek1 mutant mice

compared to wildtype littermates (S1 Table). By contrast, the myosins, MYO1B, MYO1C,

MYO1D, MYO7A and MYO9B were unaltered. The function of MYO10 in spindle formation

and integrity is related to its binding partner α-adducin (ADD1)[20]. Our MS results revealed

that ADD1 showed lower protein levels in Nek1kat2j/kat2j male mice compared to wildtype male

mice (S1 Table). The changes in protein levels observed by MS indicates that the loss of NEK1

results in an imbalance in the ratio MYO10/ADD1, and this could be affecting the proper spin-

dle formation and function.

Nek1kat2j/kat2j spermatocytes and oocytes show aberrant localization of

myosin X (MYO10) on meiotic spindles

We evaluated the localization of MYO10 on MI spindles from male spermatocytes and female

oocytes. Immunofluorescence (IF) analysis in Nek1+/+ spindles revealed that MYO10 localizes

along the β-tubulin fibers specifically in mouse spermatocytes (Fig 4a). We analyzed the num-

ber of MYO10 foci per nucleus in the coronal plane (Fig 4b) and found an increase in the

number of foci in the Nek1kat2j/kat2j mice (75.4 ± 6.7 s.d.) compared to Nek1+/+ animals

(66.3 ± 5.5 s.d.; Unpaired t test p = 0.0001). Analysis of transverse sections of male spindles

revealed that there is a subtle accumulation of MYO10 at the spindle pole in Nek1+/+ male

mice (Fig 4a), and this was disrupted in Nek1kat2j/kat2j males (Fig 4b). In the transverse plane,

we observed an increase in the MYO10 foci number in Nek1kat2j/kat2j mice (74.7 ± 5.4 s.d.)

compared to the Nek1+/+ mice (61.7 ± 4.4 s.d.; Unpaired t test p = 0.0001). The increase in

MYO10 focus counts was supported by our mass spectrometry analysis showing increased

MYO10 protein in testis extracts from Nek1kat2j/kat2j males compared to Nek1+/+ mice (S1

Table).

We also evaluated the MYO10 foci in Nek1+/+ oocytes (Fig 4c), where MYO10 localizes on

tubulin fibers as foci during MI (39.7 ± 5.1 s.d.). In contrast to the situation in males, however,

oocytes obtained from Nek1kat2j/kat2j females showed more small and dispersed foci that do not

co-localize with β-tubulin. However, counts of MYO10 foci that co-localized with β-tubulin

were significantly reduced (23.3 ± 5.4 s.d.; Unpaired T test p = 0.0001)(Fig 4d). This could

indicate that the MYO10 is present but its capacity to bind to tubulin is reduced. Taken

together, our results indicate that loss of NEK1 leads to mislocalization of MYO10 along mei-

otic spindles in both male and females germ cells, but that the regulation of MYO10 by NEK1

may be sexually dimorphic.

Localization of ADD1 on spermatocytes and oocytes is disrupted in

absence of NEK1

Our previous MS results showed that ADD1 proteins levels are reduced in testis extracts from

Nek1kat2/kat2j mouse compared to wildtype littermates (S1 Table)[18]. Thus, we evaluated the

localization and protein levels of ADD1 in both male and female spindles during meiosis I.

ADD1 localizes both to the poles of the spermatocyte spindles (Fig 5a, asterisk) and with β-

tubulin fibers of the spindle (Fig 5a, arrow heads). We evaluated the ADD1 focus number asso-

ciated with the spindle structure in coronal and transverse planes. MI spindles from Nek1kat2j/

kat2j males showed a decreased ADD1 focus number (25.7 ± 7.8 s.d.) compared to MI spindles
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from Nek1+/+ males (40.3 ± 3.2 s.d.), along with mislocalization of ADD1 on the spindle poles

on the coronal plane (Unpaired t test p = 0.001)(Fig 5b). Analysis of the transverse plane of

spindles from Nek1kat2j/kat2j males showed a decreased focus number (32.6 ± 4.6 s.d.) compared

to that of spindles from Nek1+/+ male (22.3 ± 5.5 s.d.; Unpaired t test p = 0.0001). Reduced

ADD1 focus numbers were supported by reduced ADD1 protein levels analyzed by MS in tes-

tis extracts from NEK1 mutant mice and wildtype littermates (S1 Table). Thus, the effect of

loss of NEK1 on ADD1 localization was the opposite to that seen for MYO10.

In oocytes from Nek1+/+ females, ADD1 also localized to the spindle poles as two large foci

on each pole (3.6 ± 0.9 s.d.) (Fig 5c and 5d) (ADD1 signal along the tubulin fibers was observed

but not quantified). This localization pattern was disrupted in Nek1 mutant females, with ele-

vated levels of ADD1 foci observed in the absence of NEK1. This was associated with the

appearance of multiple foci on the poles (6.08 ± 1.4 s.d.; Unpaired t test p = 0.0002), rather

Fig 4. Nek1kat2j/kat2j spermatocytes and oocytes show aberrant localization of myosin X (MYO10) on meiosis I spindles. (a) IF

against MYO10 (red), β-tubulin (green) and DAPI (magenta) on spermatocytes from wildtype (left) and Nek1kat2j/kat2j mice (right) in coronal

(top) and transverse (bottom) planes. Arrowheads indicate examples of MYO10 foci. Quantitation of MYO10 focus counts per nucleus are

given in panel (b). (c) IF against MYO10 (red), β-tubulin (green) and DAPI (magenta) in oocytes of both wildtype and mutant mice.

Arrowheads indicate examples of MYO10 foci. Quantitation of MYO10 focus counts per nucleus are given in panel (d). All values are focus

counts per spindle and black bars denote means ± Standard deviation. * Indicates statistically significant differences (Unpaired t test

p < 0.05).

https://doi.org/10.1371/journal.pone.0185780.g004
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than the two distinct large aggregations of ADD1. Again, as with the males, the change in

ADD1 focus frequency on the meiotic spindles was the opposite to that seen for MYO10

(ADD1 foci increased on oocyte spindles in the Nek1 mutant animals, whereas MYO10 foci

decreased on oocyte spindles in the absence of NEK1). Taken together, these results demon-

strate that loss of NEK1 alters the profile and ratios of ADD1 and MYO10 protein on meiosis I

spindles in males and females, but that the effect may be sexually dimorphic.

Loss of NEK1 activity induces abnormal phosphorylation of ADD1

During mitotic spindle formation mammalian cell lines, ADD1 binds to the motor domain of

MYO10 on the spindle. ADD1 and MYO10 interaction on mitotic spindles is negatively regu-

lation by phosphorylation. Phosphorylation of ADD1 induces the loss of the interaction

between both proteins and therefore the complex unloads from the mitotic spindle [20]. Phos-

phorylation of ADD1 results in abnormal mitotic spindle morphology (elongation, multipolar

Fig 5. Nek1kat2j/kat2j spermatocytes and oocytes show aberrant localization of Adducin 1 (ADD1) on meiosis I spindles. (a) IF

against ADD1 (red), β-tubulin (green) and DAPI (magenta) on spermatocytes from wildtype (left) and Nek1kat2j/kat2j mice (right) in coronal

(top) and transverse (bottom) planes. Arrowheads indicate examples of ADD1 foci. Quantitation of ADD1 focus counts per nucleus are given

in panel (b). (c) IF against ADD1 (red), β-tubulin (green) and DAPI (magenta) in oocytes of both wildtype and mutant mice. Arrowheads

indicate examples of ADD1 foci. Quantitation of ADD1 focus counts per nucleus are given in panel (d). All values are focus counts per

spindle and black bars denote means ± Standard deviation. * Indicates statistically significant differences (Unpaired t test p < 0.05).

https://doi.org/10.1371/journal.pone.0185780.g005
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spindles and aberrant chromosome alignment) and loss of its interaction with MYO10 [20].

We evaluated the proteins levels of ADD1 in testis lysates and isolated oocytes. Analysis of pro-

tein levels from testis lysates reveled a decrease in the protein levels in extracts from mutant

mice compared to wildtype testis (Fig 6a; Unpaired t test p = 0.0031). We observed a clear dou-

ble band in the Nek1kat2j/kat2j lysates, however this double band is not that obvious in the lysates

from Nek1+/+ testes. Decreased levels of ADD1 and the presence of a heavier band in WB anal-

ysis of Nek1kat2j/kat2j mouse compared to wildtype littermates suggested that the lack of NEK1

activity affects ADD1 phosphorylation. To test this hypothesis, we screened our previous phos-

phoproteomics data obtained from Nek1 mutant animals, specifically focusing on changes in

ADD1. Loss of NEK1 results in a significant increase in the phosphorylation of ADD1, but not

MYO10 (Fig 6b)[18]. Specifically, loss of NEK1 results in hyperphosphorylation of ADD1 on

serine 465 (S465) (Fig 6c). Interestingly, ADD1 also showed an increase in deamidation of

asparagine 462 (N462). Thus, both post-translational modifications could be acting as a trigger

to induce the degradation of the protein.

The results described above show that the lack of NEK1 induces changes in spindle forma-

tion and protein localization in both spermatocytes and oocytes. However, the phenotype in

both sexes is slightly different. We evaluated the relative protein levels of ADD1 in oocytes of

both Nek1+/+ and Nek1kat2j/kat2j oocytes. WB analysis revealed a decrease in ADD1 protein lev-

els in Nek1kat2j/kat2j oocytes compared to Nek1+/+ oocytes (Fig 6d; Unpaired t test p = 0.0003).

As in male, GV oocytes from Nek1kat2j/kat2j mice showed a double band, however oocytes from

Nek1+/+ also showed a double band. In both wildtype and mutant, the slower migrating band

had a stronger signal indicating that probably in oocytes the basal status of ADD1 is its phos-

phorylated state, at least at this stage of development. To evaluate the changes in the ADD1

protein levels according to oocyte maturation, we performed oocyte culture followed by WB.

Our results showed that after 6h in culture, Nek1+/+ oocytes showed the loss of the heavier

band, possibly indicating a change in ADD1 phosphorylation. However in the Nek1kat2j/kat2j

oocytes we observe that both bands almost disappear indicating that there is a change in the

phosphorylation in the mutants but a faster degradation of the protein in the mutant oocytes.

These results suggest that the phosphorylation levels of ADD1 in the mutant mice depends on

active phosphorylation of the protein by a kinase that is mis-regulated in the absence of NEK1,

or by loss of activity of a phosphatase that controls the phosphorylated status of ADD1. We

previously reported the interaction of PP1γ with NEK1 and its function regulating the pro-

phase pathway during meiosis [18]. To test if the changes of ADD1 phosphorylation similarly

depends on PP1γ activity, we cultured Nek1+/+ oocytes for 6h in the presence of the PP1γ
inhibitor, Calyculin (Fig 6e). The WB analysis of these cultures showed that the inhibition of

PP1γ induces a statistically significant increase in ADD1 protein levels, predominantly of the

slower migrating band, suggesting that the inhibition of PP1γ maintains the phosphorylation

status of ADD1. Thus, these results suggest that the lack of NEK1 action on ADD1 phosphory-

lation status may be the result of changes to PP1γ activity on ADD1.

Discussion

In eukaryotes, the structure orchestrating chromosome alignment and segregation during cell

division is the microtubular spindle [3]. To ensure correct spindle dynamics, the spindle

assembly checkpoint (SAC) becomes activated in situations where tension is not appropriately

established between the chromosomes and the spindle poles, and this will block the progres-

sion of the cell cycle to prevent aberrant segregation. In addition to the canonical SAC, other

levels of control have been described, including MYO10 [24–26]. In oocytes and frog embryos,

disruption of MYO10 negatively affects nuclear anchoring and meiotic spindle formation [26],
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Fig 6. Loss of NEK1 during meiosis is associated with hyper-phosphorylation and reduced ADD1 protein in a PP1γ-dependent

manner. (a) Quantitation of ADD1 protein levels in Nek1+/+ testis extracts relative to GAPDH control. (b) ADD1 and MYO10 protein levels,

expressed as a ratio of Nek1kat2j/kat2j / Nek1+/+, as determined by mass spectrometry. (c) ADD1 phosphopeptide and deaminated peptide

sequence determined by mass spectrometry to be higher in Nek1kat2j/kat2j testis extracts. (d) Quantitation by western blotting of ADD1 protein

levels in oocytes at 0h and after 6h of culture. (e) Quantification of ADD1 protein levels in wildtype oocytes cultured for 6h in vehicle (ethanol)

and the PP1 inhibitor Calyculin A (CLA) (at doses of 2 and 20 nM). All values are means ± Standard deviation. * Indicate statistically significant

differences (Unpaired t test p < 0.05 and one-way ANOVA followed by Dunnett’s multiple comparisons test, p < 0.05, for cultures with inhibitor)

https://doi.org/10.1371/journal.pone.0185780.g006
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while depletion of MYO10 in frog epithelial cells induces abnormal spindle movements, spin-

dle elongation, multi- spindle and pole fragmentation [25,27]. MYO10 has an amino-terminal

globular head domain that harbors acting biding and ATPase activities, giving to the protein

the capacity to bind F-actin. The tail of MYO10 has the MyTH4 and FERM domains that give

to the protein the ability to interact with microtubules [26,28]. Accordingly, recent studies

have demonstrated that loss of Myo10 results in spindle dysfunction, while overexpression of

only the MyTH4 domain alone affects the structure and shape of the spindle [24].

In the current study, we present evidence to suggest that loss of NEK1 induces increases in

MYO10 protein levels in spermatocytes, and that this in turn may result in spindle defects.

Our interpretation that overexpression of Myo10 leads to spindle defects is in line with the sug-

gestion that over-expression of the MyTH4 domain of MYO10 results in competition with the

wildtype protein, leading to the displacement of the latter from the spindle [28]. Furthermore,

it has been suggested that over-expression of only the MyTH4 may disrupt the functional link

between F-actin, microtubules and MYO10. In our data (S1 Table), we observed an increase in

the MYO10 protein levels without changes in F-actin or microtubules that could be inducing

an imbalance in the protein levels provoking a similar phenotype to the overexpression of the

MyTH4 domain. However, we could not eliminate the possibility that the lack of NEK1 could

induce changes in other proteins or on the structure of MYO10 that induces mislocalization

and/or abnormal function of MYO10. However, more studies using a MYO10 conditional

knockout or siRNA against MYO10 will help to answer these possibilities.

ADD1 is an actin-biding protein that is important for membrane stabilization [29] and for

cell-cell adhesion [30,31]. There are 3 isoforms of ADD with similar domain structures that

are formed by NH2-terminal head domain, a neck domain and a C-terminal domain. The C-

terminal domain is characterized by it high contain of myristoylated alanine-rich C kinase sub-

strate (MARCKS), this MARCKS related domain is necessary for its interaction with F-actin,

spectrin, and calmodulin [28,32–34]. Previous studies in somatic cells showed that loss of

ADD1 leads to a failure in mitotic spindle formation characterized by distortion, elongation,

multipolar spindles and abnormal chromosome alignment [20]. Here, we show that loss of

NEK1 leads to a reduction in ADD1 protein levels in spermatocytes, abnormal ADD1 distribu-

tion on the meiotic spindle of spermatocytes, and consequent disruption of spindle formation

and integrity. These phenotypes observed in meiotic cells are highly reminiscent of the pheno-

types observed in somatic cells lacking Add1 [20].

ADD1 and MYO10 interact via the MyTH4 domain of MYO10, and this interaction is criti-

cal for the correct spindle formation and function in mitotic cells [20,25,26,28]. Interaction of

ADD1 to MYO10 is dependent on phosphorylation whereby phosphorylation of ADD1 by

cyclin-dependent kinase 1 (CDK1) enables ADD1 to bind MYO10 on mitotic spindle [20].

Depletion of ADD1 or changes in phosphorylation status results in abnormal mitotic spindles

(elongation, multipolar spindles and aberrant chromosome alignment) [20]. In the absence of

NEK1 we observe an increase in the phosphorylation of ADD1 at S465 and deamination of

N462. Such modifications could induce premature loss of the ADD1-MYO10 interaction, first

by altered phosphorylation of the protein and then via degradation of the protein as a conse-

quence of the deamidation, similar to the phenotypes observed in somatic cells [20]. However,

it is unclear what kinase is phosphorylating ADD1 during meiosis, since the increased phos-

phorylation in the absence of NEK1 suggests the up-regulation of a kinase that is itself regu-

lated by NEK1 (either directly or indirectly). Clear candidates could be CDKs, however, our

MS results did not show any significant change in the profile of CDK in the absence of NEK1,

and specifically no differences in CDK1 indicating that increases in phosphorylation of ADD1

does not depend of CDK1 pathway. Alternatively, the increased phosphorylation of ADD1

could suggest the existence of a phosphatase that is inactivated by the loss of NEK1, allowing
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the hyperphosphorylation of protein. We previously showed that in Nek1 mutants, there is a

down regulation and abnormal phosphorylation in whole testis lysate of PP1γ, and our results

of oocyte cultures in the presence of a PP1 inhibitor suggest that the increase in ADD1 phos-

phorylation could be mediated by a similar mechanism.

Our results showed the disruption of the spindle, however some inconsistences between

male and female gametes were observed. In both cases is clear that the lack of NEK1 is affecting

ADD1 and MYO10, but the phenotype is slightly different. Thus, loss of NEK1 results in an

increase in MYO10 localization on male meiotic spindles and a decrease in MYO10 localiza-

tion on female meiotic spindles. Conversely, loss of NEK1 induces a decrease in ADD1 locali-

zation on male spindles, while in females the lack of NEK1 induces an increment in focus

number but smaller in size, suggesting a disruption in the protein loading or acceleration in

protein degradation. It is possible, therefore, that the increased focus count for ADD1 associ-

ated with the oocyte spindle reflects lower amounts of total protein per focus and/or fragmen-

tation of the structures with which ADD1 is associating. This is supported by the different

appearance of ADD1 foci in NEK1-deficient oocytes compared to wildtype oocytes. Another

important difference in Nek1+/+ and Nek1kat2j/kat2j oocytes compared to spermatocytes is the

presence of a double band of ADD1 in the WB analysis, suggesting that in wildtype oocytes

there is a basal phosphorylated state of ADD1. However the main difference between WT and

mutant is that in the wildtype after culture the heavier band disappear but the lighter band still

present while in the mutant both bands disappear indicating the instability of the protein in

the absence of NEK1. Further analysis of ADD1 dynamics during oocyte meiosis will require

proteomics analysis of thousands of mouse oocytes, in order to understand the distribution

and status of spindle regulatory proteins in the presence and absence of NEK1.

Taken together, our data indicate that effect of NEK1 is sexually dimorphic with respect to

spindle association of key spindle-related proteins, as is often the case in other aspects of mei-

otic regulation, including recombination, chromosome pairing and synapsis [6,35–37]. Our

results showed, how the lack of NEK1 induced changes in both male and female spindle how-

ever the variation in the female phenotype could be related to how the spindle is formed. In

males the spindle formation depend on the centrosomes. In mitotic cells, centrosome’s func-

tions are regulated by other proteins of the NEK family such as NEK2, NEK6, NEK7 and

NEK9 that in the absence of NEK1 could be modifying the interactions and function of tubu-

lins or myosins [38–40]. However, female spindle formation does not depend of centrosomes,

thus a potential compensatory function of other NEK’s during the spindle formation is not

present; inducing the differences observed in the female phenotype. The broad spectrum of

abnormal spindles in female Nek1kat2j/kat2j oocytes, also could be associated to the “leakiness”

of spindle check point in females [41]. Besides, differences observed in the phenotype, the lack

of NEK1 ends up in male and female infertility [16,17].

In summary, we propose that the loss of NEK1 activity induces abnormal spindle formation

through a mechanism mediated by the imbalance of MYO10 and ADD1. The decreases in

ADD1 and it abnormal localization on the meiotic spindle is mediated by an increase its phos-

phorylation and deamination that leads to loss of interaction of MYO10 with ADD1. Taken

together our results show the importance of NEK1 in the control of spindle formation during

male and female meiosis.
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S1 Fig. Dynamics of spindle formation in Nek1kat2j/kat2j oocytes. (a-f) Immunofluorescence

againts β-tubulin (green) and DNA staining with DAPI (magenta) showing the spindle

dynamics in Nek1kat2j/kat2j oocytes. a) Germinal vesicle (GV); b) Germinal vesicle break-

down (GVBD); c) Prometaphase I (ProI); d and e) Metaphase I (MI); f) Telophase I (TeI).

Scale bar 20μm

(EPS)

S2 Fig. Analysis of centromere and centrosomal protein ratio Nek1kat2j/kat2j/Nek1+/+ by

massspectrometry in whole testis lysates.

(EPS)

S3 Fig. Analysis of tubulins protein ratio Nek1kat2j/kat2j/Nek1+/+ by massspectrometry in

whole testis lysates.

(EPS)

S4 Fig. Analysis of actins protein ratio Nek1kat2j/kat2j/Nek1+/+ by massspectrometry in

whole testis lysates.

(EPS)

S5 Fig. Analysis of spindle assembly checkpoint protein ratio Nek1kat2j/kat2j/Nek1+/+ by

massspectrometry in whole testis lysates.

(EPS)
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